Distributed Control Systems and Resiliency

Trung Tran

9th International Symposium on Resilient Control Systems

August 17, 2016

- Control systems are changing
 - Moving to fully distributed networks and embracing the Internet of Things (IoT)
 - Moving from cloud to edge analytics
 - Moving beyond traditional ideas of resiliency
- DARPA is investing in these areas
 - Making sensing ubiquitous and smart
 - Low-power processing to enable edge analytics
 - Securing the IoT
- DARPA would like to work with you

Control systems are evolving: a look at the past

Image courtesy of grantek.com

Image courtesy of www.technocratautomation.net

Control Systems:

- Self-contained within a local area
- Physically repairable
- Resiliency meant:
 - Mitigating failures to ensure uptime and safety
- Sensor and control on the same network

Control systems are now distributed

Control network

Sensor network

Control Systems = IoT networks

- Remotely repairable
- Resiliency still means:
 - Mitigating failures to ensure uptime and safety
- Control is done in the cloud at the center of the network

"Things"

The Era of Big (Wasted) Data

[M. Horowitz, et al., CPU DB; IDC, 2012]

Edge Analytics and Edge Computing

More computing at the edge

- Localized decision making
- Higher level processing
- Smaller power budgets
- Smaller form factors

Source: Cisco, 2014

"Smart" and connected is not without cost

"Dumb" sensor

Failure = wrong reading

Mechanical Failure
Fix or replace the gauge

Failure = wrong reading

"Smart" sensor

Low power

Connectivity Issues

Mechanical Failure

DARPA IoT networks are control networks

Real-world consequences for failures in IoT networks

How is DARPA involved?

DARPA Military faces the same problems

Control/Decision Networks

Sensor/Data Networks

DARPA Making sensing ubiquitous and smart

<10nW sensing before waking

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.

DNN @ 1000x lower power with best in class accuracy

510X reduction in weights enables training in the field

^[2] E.L. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation, NIPS, 2014.

^[3] S. Han, J. Pool, J. Tran, W. Dally. Learning both Weights and Connections for Efficient Neural Networks, NIPS, 2015.

^[4] S. Han, H. Mao, W. Dally. Deep Compression..., arxiv:1510.00149, 2015.

^[5] F.N. landola, M. Moskewicz, K. Ashraf, S. Han, W. Dally, K. Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size, arXiv, 2016.

Low power processing to enable edge analytics

A graph analytics processor with 1000x improvement in processing efficiency

- Relationships between events discovered as they unfold
- Decisions made at the edge of the network

Securing the Internet of Things

Integrated security for <1¢

How can you get involved?

DARPA Commercial engagement and outreach

- Interested in finding industry directions
- Finding common interests
- Working together to advance technologies
 - Google
 - Siri
 - iRobot
 - DARPA Robotics Challenge

Working with DARPA: Flexibility, Speed

Unlike typical government agencies, DARPA can operate in a commercial-like fashion utilizing its *Other Transactional Authority (OTA)*.

- Government rules and regulations for IP, accounting and contract administration do not apply under OTA (i.e. Generally Accepted Accounting Principals (GAAP) are satisfactory).
- An OTA represents a vehicle that is close to a standard business contract, and industry partners don't need to have an expert on government contracting.
- OTA allows DARPA the flexibility to formulate IP arrangements that are mutually beneficial to all parties.

DARPA Recent DARPA partnerships

- Intel
- HP
- Motorola
- Nvidia
- 3M
- Xilinx
- Sanofi
- Micron
- **Novartis**
- Cray Research, Inc.

DARPA Areas of interest for DARPA/MTO

- Cyber Resiliency
 - Authentication
 - Access control
 - Information assurance
- Low power and remote sensors
 - Physical security
 - Power delivery
 - Connectivity
 - Cost
 - Ruggedized systems
- Decision making and control
 - Sensor fusion
 - Sensor tasking
 - Automation

Got an idea? Contact us

- Trung Tran, DARPA/MTO Program Manager (trung.tran@darpa.mil)
 - Nicole Heidel (<u>nicole.heidel.ctr@darpa.mil</u>), SETA
 - Mark Laurri (<u>mark.laurri.ctr@darpa.mil</u>), SETA

DARPA IEEE Proceedings Special Issue on IoT

- DARPA is currently soliciting contributors (U.S. and International) for an upcoming Proceedings of the IEEE Special Issue on IoT Security
 - Authentication and encryption in IoT devices
 - Security in autonomous vehicles
 - Smart Cities
 - Security in industry/factory floor
 - Test Beds
- Each of the survey-style papers (10-12 pp. in length) should include the following:
 - IoT foundations
 - State-of-the-art
 - Challenges
 - Outlook
- Anticipated publication date: Fall 2017

Distribution Statement 20